Some facts about pipes
Pipes are commonly joined by welding, using threaded pipe and fittings; sealing the connection with a pipe thread compound, Polytetrafluoroethylene (PTFE) Thread seal tape, oakum, or PTFE string, or by using a mechanical coupling. Process piping is usually joined by welding using a TIG or MIG process. The most common process pipe joint is the butt weld. The ends of pipe to be welded must have a certain weld preparation called an End Weld Prep (EWP) which is typically at an angle of 37.5 degrees to accommodate the filler weld metal. The most common pipe thread in North America is the National Pipe Thread (NPT) or the Dryseal (NPTF) version. Other pipe threads include the British standard pipe thread (BSPT), the garden hose thread (GHT), and the fire hose coupling (NST).
Copper pipes are typically joined by soldering, brazing, compression fittings, flaring, or crimping. Plastic pipes may be joined by solvent welding, heat fusion, or elastomeric sealing.
If frequent disconnection will be required, gasketed pipe flanges or union fittings provide better reliability than threads. Some thin-walled pipes of ductile material, such as the smaller copper or flexible plastic water pipes found in homes for ice makers and humidifiers, for example, may be joined with compression fittings.
Underground pipe typically uses a "push-on" gasket style of pipe that compresses a gasket into a space formed between the two adjoining pieces. Push-on joints are available on most types of pipe. A pipe joint lubricant must be used in the assembly of the pipe. Under buried conditions, gasket-joint pipes allow for lateral movement due to soil shifting as well as expansion/contraction due to temperature differentials.11 Plastic MDPE and HDPE gas and water pipes are also often joined with Electrofusion fittings.
Large above ground pipe typically uses a flanged joint, which is generally available in ductile iron pipe and some others. It is a gasket style where the flanges of the adjoining pipes are bolted together, compressing the gasket into a space between the pipe.
Mechanical grooved couplings or Victaulic joints are also frequently used for frequent disassembly and assembly. Developed in the 1920s, these mechanical grooved couplings can operate up to 120 pounds per square inch (830 kPa) working pressures and available in materials to match the pipe grade. Another type of mechanical coupling is a Swagelok brand fitting; this type of compression fitting is typically used on small tubing under 0.75 inches (19 mm) in diameter.
When pipes join in chambers where other components are needed for the management of the network (such as valves or gauges), dismantling joints are generally used, in order to make mounting/dismounting easier.
Źródło: https://en.wikipedia.org/wiki/Pipe_(fluid_conveyance)#Installation
detection of a failure of home appliance
Causes overcharging of fees for water consumption may be several. One of them is the failure of one of the home appliances. This device can be a washing machine or dishwasher, which in the course of work they have begun to charge too much water. Much more serious reason for the increase in charges for water consumed can be created at home leaking water, the detection can be made possible by visiting plumber. There will always be visible to the household, but it can effectively raise the status of water consumption. They came home a plumber, if none serious failure, check the efficiency to our existing water meter, because a failure would generate receiving excessive water charges.
Boiler - is it safe?
To define and secure boilers safely, some professional specialized organizations such as the American Society of Mechanical Engineers (ASME) develop standards and regulation codes. For instance, the ASME Boiler and Pressure Vessel Code is a standard providing a wide range of rules and directives to ensure compliance of the boilers and other pressure vessels with safety, security and design standards.5
Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. When water is converted to steam it expands to over 1,000 times its original volume and travels down steam pipes at over 100 kilometres per hour. Because of this, steam is a great way of moving energy and heat around a site from a central boiler house to where it is needed, but without the right boiler feed water treatment, a steam-raising plant will suffer from scale formation and corrosion. At best, this increases energy costs and can lead to poor quality steam, reduced efficiency, shorter plant life and unreliable operation. At worst, it can lead to catastrophic failure and loss of life. Collapsed or dislodged boiler tubes can also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who load the coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories can potentially demolish entire buildings.
A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler can also happen if a leak occurs in the steam supply lines that is larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims
Źródło: https://en.wikipedia.org/wiki/Boiler#Safety